Adapted from Dr. Sofia Pineda Ochoa
Sources:
[1] “[W]e consume about 630 pounds of milk, yogurt, cheese and ice cream per year.” A Aubrey. The Average American Ate (Literally) A Ton This Year. NPR.org; 2011 Dec. Available here (accessed Jan. 31, 2016).
[2] RL Weinsier and CL Krumdieck. Dairy Foods and Bone Health: Examination of the Evidence. Am J Clin Nutr; 2000 Sep; 72(3):681-9. Available here (accessed Jan. 31, 2016).
[3] A Curry. Archaeology: The Milk Revolution. Nature; 2013 Jul. Available here (accessed Jan. 31, 2016).
[4] A study of gene mutations in apes suggests that “[h]umanity’s genetic split from an ape-like ancestor came about 13 million years ago”, which is even earlier than the consensus previously suggested by the fossil record “that the last common ancestor of the two species…lived some seven million years ago.” D Vergano. Ancient Human-Chimp Link Pushed Back Millions of Year. National Geographic; 2008 Jun. Available here (accessed Jan. 31, 2016).
[5] D Ganmaa and A Sato. The Possible Role of Female Sex Hormones in Milk from Pregnant Cows in the Development of Breast, Ovarian and Corpus Uteri Cancers. Med Hypotheses; 2005; 65(6):1028-37. Available here (accessed Jan. 31, 2016).
[6] K Maruyama, T Oshima and K Ohyama. Exposure to Exogenous Estrogen through Intake of Commercial Milk Produced from Pregnant Cows. Pediatr Int; 2010 Feb; 52(1):33-8. Available here (accessed Jan. 31, 2016).
[7] MT Brinkman, L Baglietto, K Krishnan, DR English, G Severi, HA Morris, JL Hopper and GG Giles. Consumption of Animal Products, their Nutrient Components and Postmenopausal Circulating Steroid Hormone Concentrations. Eur J Clin Nutr; 2010 Feb; 64(2):176-83. Available here (accessed Jan. 31, 2016).
[8] JM Genkinger, DJ Hunter, D Spiegelman, KE Anderson, A Arslan, WL Beeson, JE Buring, GE Fraser, JL Freudenheim, RA Goldbohm, SE Hankinson, DR Jacobs, Jr., A Koushik, JV Lacey, Jr., SC Larsson, M Leitzmann, ML McCullough, AB Miller, C Rodriguez, TE Rohan, LJ Schouten, R Shore, E Smit, A Wolk, SM Zhang and SA Smith-Warner. Dairy Products and Ovarian Cancer: A Pooled Analysis of 12 Cohort Studies. Cancer Epidemiol Biomarkers Prev; 2006 Feb; 15(2):364-72. Available here(accessed Jan. 31, 2016).
[9] JM Chan, EL Giovannucci. Dairy Products, Calcium, and Vitamin D and Risk of Prostate Cancer. Epidemiol Rev; 2001;23(1):87-92. Available here (accessed Jan. 31, 2016).
[10] E Giovannucci. Dietary Influences of 1,25(OH)2 Vitamin D in Relation to Prostate Cancer: A Hypothesis. Cancer Causes Control; 1998 Dec; 9(6):567-82. Available here (accessed Jan. 31, 2016).
[11] JM Chan, MJ Stampfer, J Ma, PH Gann, JM Gaziano and EL Giovannucci. Dairy Products, Calcium, and Prostate Cancer Risk in the Physicians’ Health Study. Am J Clin Nutr; 2001 Oct; 74(4):549-54. Available here (accessed Jan. 31, 2016).
[12] LQ Qin, JY Xu, PY Wang, J Tong and K Hoshi. Milk Consumption is a Risk Factor for Prostate Cancer in Western Countries: Evidence from Cohort Studies. Asia Pac J Clin Nutr; 2007; 16(3):467-76. Available here (accessed Jan. 31, 2016).
[13] LQ Qin, JY Xu, PY Wang, T Kaneko, K Hoshi and A Sato. Milk Consumption is a Risk Factor for Prostate Cancer: Meta-Analysis of Case-Control Studies. Nutr Cancer; 2004; 48(1):22-7. Available here (accessed Jan. 31, 2016).
[14] PL Tate, R Bibb and LL Larcom. Milk Stimulates Growth of Prostate Cancer Cells in Culture. Nutr Cancer; 2011 Nov; 63(8):1361-6. Available here (accessed Jan. 31, 2016).
[15] D Ganmaa, XM Li, J Wang, LQ Qin, PY Wang and A Sato. Incidence and Mortality of Testicular and Prostatic Cancers in relation to World Dietary Practices. Int J Cancer; 2002 Mar 10; 98(2):262-7. Available here (accessed Jan. 31, 2016).
[16] M Messina. Soybean Isoflavone Exposure Does Not Have Feminizing Effects on Men: A Critical Examination of the Clinical Evidence. Fertil Steril. 2010 May; 93(7):2095-104. Available here (Accessed Feb. 6, 2016).
[17] XO Shu, F Jin, Q Dai, W Wen, JD Potter, LH Kushi, Z Ruan, YT Gao and W Zheng. Soyfood Intake During Adolescence and Subsequent Risk of Breast Cancer among Chinese Women. Cancer Epidemiol Biomarkers Prev. 2001 May; 10(5):483-8. Available here (Accessed Feb. 6, 2016).
[18] AH Wu, P Wan, J Hankin, CC Tseng, MC Yu and MC Pike. Adolescent and Adult Soy Intake and Risk of Breast Cancer in Asian-Americans. Carcinogenesis. 2002 Sep; 23(9):1491-6. Available here (accessed Feb. 6, 2016).
[19] GE Dunaif and TC Campbell. Relative Contribution of Dietary Protein Level and Aflatoxin B1 Dose in Generation of Presumptive Preneoplastic Foci in Rat Liver. J Natl Cancer Inst. 1987 Feb; 78(2):365-9. Available here (accessed Feb. 6, 2016).
[20] LD Youngman and TC Campbell. Inhibition of Aflatoxin B1-Induced Gamma-Glutamyltranspeptidase Positive (GGT+) Hepatic Preneoplastic Foci and Tumors by Low Protein Diets: Evidence that Altered GGT+ Foci Indicate Neoplastic Potential. Carcinogenesis. 1992 Sep; 13(9):1607-13. Available here (accessed Feb. 6, 2016).
[21] TC Campbell. Dietary Protein, Growth Factors, and Cancer. Am J Clin Nutr. 2007; 85:1667. Available here (accessed Feb. 6, 2016).
[22] D Ornish, G Weidner, WR Fair, R Marlin and EB Pettengill, CJ Raisin, S Dunn-Emke, L Crutchfield, FN Jacobs, RJ Barnard, WJ Aronson, P McCormac, DJ McKnight, JD Fein, AM Dnistrian, J Weinstein, TH Ngo, NR Mendell, PR Carroll. Intensive Lifestyle Changes May Affect the Progression of Prostate Cancer. J Urol. 2005 Sep; 174(3):1065-9. Available here (accessed Feb. 6, 2016).
[23] DL Kleinberg, TL Wood, PA Furth and AV Lee. Growth Hormone and Insulin-Like Growth Factor-I in the Transition from Normal Mammary Development to Preneoplastic Mammary Lesions. Endocr Rev. 2009 Feb; 30(1):51-74. doi: 10.1210/er.2008-0022. Available here (accessed Feb. 6, 2016).
[24] NE Allen, PN Appleby, GK Davey, R Kaaks, S Rinaldi and TJ Key. The Associations of Diet with Serum Insulin-Like Growth Factor I and its Main Binding Proteins in 292 Women Meat-Eaters, Vegetarians, and Vegans. Cancer Epidemiol Biomarkers Prev. 2002 Nov; 11(11):1441-8. Available here (accessed Feb. 6, 2016).
[25] MF McCarty. Vegan Proteins May Reduce Risk of Cancer, Obesity, and Cardiovascular Disease by Promoting Increased Glucagon Activity. Med Hypotheses. 1999 Dec; 53(6):459-85. Available here (accessed Feb. 6, 2016).
[26] K Dahl-Jørgensen, G Joner and KF Hanssen. Relationship Between Cows’ Milk Consumption and Incidence of IDDM in Childhood. Diabetes Care. 1991 Nov; 14(11):1081-3. Available here (accessed Feb. 6, 2016).
[27] HC Gerstein. Cow’s Milk Exposure and Type I Diabetes Mellitus. A Critical Overview of the Clinical Literature. Diabetes Care. 1994 Jan; 17(1):13-9. Available here (accessed Feb. 6, 2016).
[28] SM Virtanen, L Räsänen, A Aro, J Lindström, H Sippola, R Lounamaa, L Toivanen, J Tuomilehto and HK Akerblom. Infant Feeding in Finnish Children less than 7 yr of Age with Newly Diagnosed IDDM. Childhood Diabetes in Finland Study Group. Diabetes Care. 1991 May; 14(5):415-7. Available here (accessed Feb. 6, 2016).
[29] E Savilahti, HK Akerblom, VM Tainio and S Koskimies. Children with Newly Diagnosed Insulin Dependent Diabetes Mellitus have Increased Levels of Cow’s Milk Antibodies. Diabetes Res. 1988 Mar; 7(3):137-40. Available here (accessed Feb. 6, 2016).
[30] J Karjalainen, JM Martin, M Knip, J Ilonen, BH Robinson, E Savilahti, HK Akerblom and HM Dosch. A Bovine Albumin Peptide as a Possible Trigger of Insulin-Dependent Diabetes Mellitus. N Engl J Med. 1992 Jul 30; 327(5):302-7. Available here(accessed Feb. 6, 2016).
[31] D Malosse, H Perron, A Sasco and JM Seigneurin. Correlation Between Milk and Dairy Product Consumption and Multiple Sclerosis Prevalence: A Worldwide Study. Neuroepidemiology. 1992; 11(4-6):304-12. Available here (accessed Feb. 6, 2016).
[32] BW Agranoff and D Goldberg. Diet and the Geographical Distribution of Multiple Sclerosis. Lancet. 1974 Nov 2; 2(7888):1061-6. Available here (accessed Feb. 6, 2016).
[33] J Butcher. The Distribution of Multiple Sclerosis in Relation to the Dairy Industry and Milk Consumption. N Z Med J. 1976 Jun 23; 83(566):427-30. Available here (accessed Feb. 6, 2016).
[34] SP Oliver, BM Jayarao and RA Almeida. Foodborne Pathogens in Milk and the Dairy Farm Environment: Food Safety and Public Health Implications. Foodborne Pathog Dis. 2005 Summer; 2(2):115-29. Available here (accessed Feb. 6, 2016).
[35] SF Altekruse, BB Timbo, JC Mowbray, NH Bean and ME Potter. Cheese-Associated Outbreaks of Human Illness in the United States, 1973 to 1992: Sanitary Manufacturing Practices Protect Consumers. J Food Prot. 1998 Oct; 61(10):1405-7. Available here (accessed Feb. 6, 2016).
[36] Centers for Disease Control and Prevention website: CDC – Listeria (Listeriosis) – Outbreaks – Multistate Outbreak of Listeriosis Linked to Blue Bell Creameries Products (Final Update). Available here (accessed Feb. 6, 2016).
[37] U.S. Food and Drug Administration website: Food – Recalls, Outbreaks & Emergencies – Outbreaks – FDA Investigates Listeria monocytogenes in Ice Cream Products from Blue Bell Creameries. Available here (accessed Feb. 6, 2016).
[38] MI Chubirko, GM Smol’skiĭ, and GM Basova. The Effect of Pesticides on Dairy Product Quality. Gig Sanit. 1998 Mar-Apr; (2):23-5. Available here (accessed Feb. 6, 2016).
[39] NM Salem, R Ahmad and H Estaitieh. Organochlorine Pesticide Residues in Dairy Products in Jordan. Chemosphere. 2009 Oct; 77(5):673-8. Available here (accessed Feb. 6, 2016).
[40] K Kannan, S Tanabe, JP Giesy and R Tatsukawa. Organochlorine Pesticides and Polychlorinated Biphenyls in Foodstuffs from Asian and Oceanic Countries. Rev Environ Contam Toxicol. 1997; 152:1-55. Available here (accessed Feb. 6, 2016).
[41] M Sala, A Caminiti, P Rombolà, A Volpe, C Roffi, O Caperna, M Miceli, A Ubaldi, A Battisti and P Scaramozzino. Beta-Hexachlorocyclohexane Contamination in Dairy Farms of the Sacco River Valley, Latium, Italy, 2005. A Retrospective Cohort Study. Epidemiol Prev. 2012 Sep-Oct; 36 (5 Suppl 4): 34-43. Available here (accessed Feb. 6, 2016).
[42] EK Silbergeld, J Graham and JB Price. Industrial food animal production, antimicrobial resistance, and human health. Annu Rev Public Health. 2008; 29:151-69. Available here (accessed Feb. 6, 2016).
[43] H Steinfeld, P Gerber, T Wassenaar, V Castel, M Rosales and C de Haan. Livestock’s Long Shadow – Environmental Issues and Options. United Nations, Food and Agriculture Organization. 2006 Nov. Available here (accessed Feb. 6, 2016).
[44] K McVeigh. Scientists: Overuse of Antibiotics in Animal Agriculture Endangers Humans. The Guardian. Available here(accessed Feb. 6, 2016).
[45] MJ Gilchrist, C Greko, DB Wallinga, GW Beran, DG Riley and PS Thorne. The Potential Role of Concentrated Animal Feeding Operations in Infectious Disease Epidemics and Antibiotic Resistance. Environ Health Perspect. 2007 Feb; 115(2): 313–316. Available here (accessed Feb. 6, 2016).
[46] MR Talley. The National Milk Safety Program and Drug Residues in Milk. Vet Clin North Am Food Anim Pract. 1999 Mar; 15(1):63-73. Available here (accessed Feb. 6, 2016).
[47] RL Weinsier and CL Krumdieck. Dairy Foods and Bone Health: Examination of the Evidence. Am J Clin Nutr. 2000 Sept; vol. 72 no. 3 681-689. Available here (accessed Feb. 7, 2016).
[48] DM Hegsted. Calcium and Osteoporosis. J Nutr. 1986 Nov; 116(11):2316-9. Available here (accessed Feb. 8, 2016).
[49] Harvard T.H. Chan, School of Public Health: The Nutrition Source – Calcium and Milk: What’s Best for Your Bones and Health? Available here (accessed Feb. 8, 2016).
[50] K Michaëlsson, A Wolk, S Langenskiöld, S Basu, EW Lemming, H Melhus and L Byberg. Milk Intake and Risk of Mortality and Fractures in Women and Men: Cohort Studies. BMJ. 2014; 349:g6015. Available here (accessed Feb. 8, 2016).
[51] D Feskanich, HA Bischoff-Ferrari, L Frazier and WC Willett. Milk Consumption During Teenage Years and Risk of Hip Fractures in Older Adults. JAMA Pediatr. 2014 Jan; 168(1): 54–60. Available here (accessed Feb. 8, 2016).
[52] E Giovannucci. Dietary Influences of 1,25(OH)2 Vitamin D in Relation to Prostate Cancer: A hypothesis. Cancer Causes Control. 1998 Dec; 9(6):567-82. Available here (accessed Feb. 11, 2016).
[53] HC Sherman and AO Gettler. The Balance of Acid-Forming and Base-Forming Elements in Foods, and its Relation to Ammonia Metabolism. J. Biol. Chem. 1912 11: 323-338. Available here (accessed Feb. 11, 2016).
[54] HC Sherman, AR Rose and MS Rose. Calcium Requirement of Maintenance in Man. J. Biol. Chem. 1920 44: 21-27. Available here (accessed Feb. 11, 2016).
[55] BJ Abelow, TR Holford and KL Insogna. Cross-cultural Association between Dietary Animal Protein and Hip Fracture: A hypothesis. Calcif Tissue Int. 1992 Jan;50(1):14-8. Available here (accessed Feb. 11, 2016).
[56] D Feskanich, WC Willett, MJ Stampfer, GA Colditz. Protein Consumption and Bone Fractures in Women. Am J Epidemiol. 1996 Mar 1; 143(5):472-9. Available here (accessed Feb. 11, 2016).
[57] LA Frassetto, RC Morris Jr., DE Sellmeyer, A Sebastian. Adverse Effects of Sodium Chloride on Bone in the Aging Human Population Resulting from Habitual Consumption of Typical American Diets. J Nutr. 2008 Feb; 138(2):419S-422S. Available here (accessed Feb. 11, 2016).
[58] MM Adeva, G Souto. Diet-induced Metabolic Acidosis. Clin Nutr. 2011 Aug; 30(4):416-21. Available here (accessed Feb. 11, 2016).
[59] US Barzel, LK Massey. Excess Dietary Protein can Adversely Affect Bone. J Nutr. 1998 Jun;128(6):1051-3. Available here(accessed Feb. 11, 2016).
[60] LM Ausman, LM Oliver, BR Goldin, MN Woods, SL Gorbach, JT Dwyer. Estimated Net Acid Excretion Inversely Correlates with Urine pH in Vegans, Lacto-ovo Vegetarians, and Omnivores. J Ren Nutr. 2008 Sep; 18(5):456-65. Available here(accessed Feb. 11, 2016).
[61] TC Campbell and TM Campbell. The China Study. BenBella Books. 2005 Jan.
[62] LA Frassetto, KM Todd, RC Morris and A Sebastian. Worldwide Incidence of Hip Fracture in Elderly Women: Relation to Consumption of Animal and Vegetable Foods. J Gerontol A Biol Sci Med Sci. 2000 Oct; 55(10):M585-92. Available here(accessed Feb. 11, 2016).